激发创造力:将语言模型打造成层次化策略,提升解决复杂问题的探索效率 [译]
虽然大语言模型(LLMs)已经取得了令人瞩目的进展,但它们在处理一些复杂的推理问题时还是会遇到不少困难。目前的解决方案主要是通过挖掘详细和底层的推理链条。但是,这样的方法在寻找解决方案的过程中依然受到了限制,使得正确答案在庞大的可能性中难以脱颖而出。在这项研究中,我们通过上下文学习,把大语言模型构建成一个层次化的策略,从而激发出了其在多样化问题解决策略探索上的创造性潜能。这个层次化策略包含了两个部分:一个能够提出多种高层问题解决策略作为启示的“领导者”,以及一个根据领导者给出的高层指令来执行详细问题解决过程的“执行者”。执行者会以领导者的指示为蓝本,探索多条可能的推理路径来攻克问题,并为每个领导者的建议生成一组可能的解决方案。此外,我们还提出了一种高效且有效的基于锦标赛的方法来从这些探索出来的解决方案中挑选出最终的答案。我们的方法不仅能够给出有深度和启发性的建议,还能够拓宽问题解决策略的探索范围,从而在 MATH 数据集中的一些难题上取得更高的答案准确率。
November 2, 2023
View Article